If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19.6t-4.9t^2+103=0
a = -4.9; b = 19.6; c = +103;
Δ = b2-4ac
Δ = 19.62-4·(-4.9)·103
Δ = 2402.96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19.6)-\sqrt{2402.96}}{2*-4.9}=\frac{-19.6-\sqrt{2402.96}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19.6)+\sqrt{2402.96}}{2*-4.9}=\frac{-19.6+\sqrt{2402.96}}{-9.8} $
| 9(y-8)=9 | | 3(5x+2)=4(7x+3) | | 20,000=1600×r×2 | | 5(2x+1)=26+3(2x-3) | | 4x-3(x+2)=1/3x | | 9(y-8)=9 | | Y=48-2x+12 | | 26-6(5x-2)=-4 | | 23x+12x-5x=53-24 | | 3x–7=3(x–3)+2 | | 7x+11=13x+35 | | -4x+-4=16 | | -3(2+x)=3 | | 12x3=36-4=32/2=16 | | -3.2z=4 | | 5x+10=-35;(-9) | | 3x+10=5x+4. | | 13=-14x+9 | | 0.12a=2.166 | | 495=165+55x | | ×+10y=33 | | 6x−19=9x+18 | | 4-6(4x-6)=-2 | | -10m+9=-91 | | 11x3=9x37 | | 4(x-5)=2x-(5+x) | | 49x+23=93 | | 5x+2(x+7)=14x7 | | 4.3=10m=8.91 | | 3(x+6)=x+18 | | 3x+13+5x+9=180 | | d/6+960+d/4=1140 |